Hardware Acceleration of Sparse Oblique Decision Trees for Edge Computing

Author:

Teodorovic Predrag,Struharik Rastislav

Abstract

This paper presents a hardware accelerator for sparse decision trees intended for FPGA applications. To the best of authors’ knowledge, this is the first accelerator of this type. Beside the hardware accelerator itself, a novel algorithm for induction of sparse decision trees is also presented. Sparse decision trees can be attractive because they require less memory resources and can be more efficiently processed using specialized hardware compared to traditional oblique decision trees. This can be of significant interest, particularly, in the edge-based applications, where memory and compute resources as well as power consumption are severely constrained. The performance of the proposed sparse decision tree induction algorithm as well as developed hardware accelerator are studied using standard benchmark datasets obtained from the UCI Machine Learning Repository database. The results of the experimental study indicate that the proposed algorithm and hardware accelerator are very favourably compared with some of the existing solutions.

Funder

Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Feasibility of Decision Trees for Edge Intelligence in Highly Constrained Internet-of-Things (IoT);Proceedings of the Great Lakes Symposium on VLSI 2023;2023-06-05

2. Universal Reconfigurable Hardware Accelerator for Sparse Machine Learning Predictive Models;Electronics;2022-04-08

3. Implementation of Decision Tree Classifier on FPGA;2021 International Conference on Control, Automation, Power and Signal Processing (CAPS);2021-12-10

4. Machine Learning and Fuzzy Logic in Electronics: Applying Intelligence in Practice;Electronics;2021-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3