Universal Reconfigurable Hardware Accelerator for Sparse Machine Learning Predictive Models

Author:

Vranjkovic VukORCID,Teodorovic Predrag,Struharik Rastislav

Abstract

This study presents a universal reconfigurable hardware accelerator for efficient processing of sparse decision trees, artificial neural networks and support vector machines. The main idea is to develop a hardware accelerator that will be able to directly process sparse machine learning models, resulting in shorter inference times and lower power consumption compared to existing solutions. To the author’s best knowledge, this is the first hardware accelerator of this type. Additionally, this is the first accelerator that is capable of processing sparse machine learning models of different types. Besides the hardware accelerator itself, algorithms for induction of sparse decision trees, pruning of support vector machines and artificial neural networks are presented. Such sparse machine learning classifiers are attractive since they require significantly less memory resources for storing model parameters. This results in reduced data movement between the accelerator and the DRAM memory, as well as a reduced number of operations required to process input instances, leading to faster and more energy-efficient processing. This could be of a significant interest in edge-based applications, with severely constrained memory, computation resources and power consumption. The performance of algorithms and the developed hardware accelerator are demonstrated using standard benchmark datasets from the UCI Machine Learning Repository database. The results of the experimental study reveal that the proposed algorithms and presented hardware accelerator are superior when compared to some of the existing solutions. Throughput is increased up to 2 times for decision trees, 2.3 times for support vector machines and 38 times for artificial neural networks. When the processing latency is considered, maximum performance improvement is even higher: up to a 4.4 times reduction for decision trees, a 84.1 times reduction for support vector machines and a 22.2 times reduction for artificial neural networks. Finally, since it is capable of supporting sparse classifiers, the usage of the proposed hardware accelerator leads to a significant reduction in energy spent on DRAM data transfers and a reduction of 50.16% for decision trees, 93.65% for support vector machines and as much as 93.75% for artificial neural networks, respectively.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference70 articles.

1. Predictive Data Mining Models;Olson,2020

2. Data Mining: Concepts, Models, Methods, and Algorithms;Kantardzic,2020

3. Data Mining and Machine Learning: Fundamental Concepts and Algorithms;Zaki,2020

4. Classification and Regression Trees;Breiman,1984

5. Induction of decision trees

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hardware Accelerators And Accelerators For Machine Learning;2022 International Conference on IT and Industrial Technologies (ICIT);2022-10-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3