Author:
Bouallègue Amal,Souissi Fatma,Nouairi Issam,Souibgui Monia,Abbes Zouhaier,Mhadhbi Haythem
Abstract
Seed priming is one of the potential physiological approaches to enhance seed germination under salt stress. The present study examined the role of two seed priming molecules, salicylic acid (SA) and hydrogen peroxide (H2O2), to enhance the salt tolerance in lentil seeds at germination stage. Salt stress caused significant decrease in germination percentage and primary root elongation. This decrease was associated with significant increase in lipid peroxidation and total lipid (TL) contents in embryonic axis. The catalase (CAT), guaiacol peroxydase (GPOX) and superoxide dismutase (SOD) activities remained unchanged or decreased significantly under the influence of salt stress, in both embryonic axis and cotyledons. Starch mobilization was not affected by salt stress. The two priming treatments effectively alleviated the negative effects of salt stress. SA and H2O2 applications after dose optimization resulted in significant enhancement of germination percentage and primary root elongation. No significant changes in starch, soluble sugars contents and SOD activity were detected following SA and H2O2 treatments. Seed priming treatments triggered the activities of GPOX and CAT and caused the reduction of lipid peroxidation especially in embryonic axis. TL content and especially the fatty acid C18:3 increased after SA applications. The better performance under salt stress of primed lentil seeds was associated with lower lipid peroxidation, and activation of enzymatic antioxidative defense system. Obtained results confirm the potential for using SA and H2O2 to improve germination and plant growth under salt stress conditions.
Publisher
Uniwersytet Przyrodniczy w Lublinie
Subject
Horticulture,Plant Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献