Spatial and temporal constrained ranked retrieval over videos

Author:

Chen Yueting1,Koudas Nick2,Yu Xiaohui1,Yu Ziqiang3

Affiliation:

1. York University

2. University of Toronto

3. Yantai University

Abstract

Recent advances in Computer Vision (CV) algorithms have improved accuracy and efficiency, making video annotations possible with high accuracy. In this paper, we utilize the annotated data provided by such algorithms and construct graph representations to capture both object labels and spatial-temporal relationships of objects in videos. We define the problem of Spatial and Temporal Constrained Ranked Retrieval (STAR Retrieval) over videos. Based on the graph representation, we propose a two-phase approach, consisting of the ingestion phase, where we construct and materialize the Graph Index (GI), and the query phase, where we compute the top ranked windows (video clips) according to the window matching score efficiently. We propose two algorithms to perform Spatial Matching (SMA) and Temporal Matching (TM) separately with an early-stopping mechanism. Our experiments demonstrate the effectiveness of the proposed methods, achieving orders of magnitude speedups on queries with high selectivity.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference51 articles.

1. Ahmad Sedky Adly , MS Abdelwahab , Islam Hegazy , and Taha Elarif . 2020 . Issues and Challenges for Content-Based Video Search Engines A Survey. In 2020 21st International Arab Conference on Information Technology (ACIT). IEEE, 1--18 . Ahmad Sedky Adly, MS Abdelwahab, Islam Hegazy, and Taha Elarif. 2020. Issues and Challenges for Content-Based Video Search Engines A Survey. In 2020 21st International Arab Conference on Information Technology (ACIT). IEEE, 1--18.

2. Utilizing semantic word similarity measures for video retrieval

3. Real-Time Motion Trajectory-Based Indexing and Retrieval of Video Sequences

4. Tracking Without Bells and Whistles

5. Murray Campbell Alexander Haubold Shahram Ebadollahi Dhiraj Joshi Milind R Naphade Apostol Natsev Joachim Seidl John R Smith Katya Scheinberg Jelena Tesic etal 2006. IBM Research TRECVID-2006 Video Retrieval System.. In TRECVID. 175--182. Murray Campbell Alexander Haubold Shahram Ebadollahi Dhiraj Joshi Milind R Naphade Apostol Natsev Joachim Seidl John R Smith Katya Scheinberg Jelena Tesic et al. 2006. IBM Research TRECVID-2006 Video Retrieval System.. In TRECVID. 175--182.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3