EQUI-VOCAL: Synthesizing Queries for Compositional Video Events from Limited User Interactions

Author:

Zhang Enhao1,Daum Maureen1,He Dong1,Haynes Brandon2,Krishna Ranjay1,Balazinska Magdalena1

Affiliation:

1. University of Washington

2. Microsoft Gray Systems Lab

Abstract

We introduce EQUI-VOCAL: a new system that automatically synthesizes queries over videos from limited user interactions. The user only provides a handful of positive and negative examples of what they are looking for. EQUI-VOCAL utilizes these initial examples and additional ones collected through active learning to efficiently synthesize complex user queries. Our approach enables users to find events without database expertise, with limited labeling effort, and without declarative specifications or sketches. Core to EQUI-VOCAL's design is the use of spatio-temporal scene graphs in its data model and query language and a novel query synthesis approach that works on large and noisy video data. Our system outperforms two baseline systems---in terms of F1 score, synthesis time, and robustness to noise---and can flexibly synthesize complex queries that the baselines do not support.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference85 articles.

1. Beam search pruning in speech recognition using a posterior probability-based confidence measure

2. Real-Time Video Analytics;Ananthanarayanan Ganesh;The Killer App for Edge Computing. Computer,2017

3. Michael R. Anderson , Michael J. Cafarella , Germán Ros , and Thomas F . Wenisch . 2019 . Physical Representation-Based Predicate Optimization for a Visual Analytics Database. In ICDE. 1466--1477. Michael R. Anderson, Michael J. Cafarella, Germán Ros, and Thomas F. Wenisch. 2019. Physical Representation-Based Predicate Optimization for a Visual Analytics Database. In ICDE. 1466--1477.

4. Unmanned Aerial Aircraft Systems for transportation engineering: Current practice and future challenges;Barmpounakis Emmanouil N;IJTST,2016

5. Favyen Bastani , Songtao He , Arjun Balasingam , Karthik Gopalakrishnan , Mohammad Alizadeh , Hari Balakrishnan , Michael J. Cafarella , Tim Kraska , and Sam Madden . 2020 . MIRIS: Fast Object Track Queries in Video. In SIGMOD. 1907--1921. Favyen Bastani, Songtao He, Arjun Balasingam, Karthik Gopalakrishnan, Mohammad Alizadeh, Hari Balakrishnan, Michael J. Cafarella, Tim Kraska, and Sam Madden. 2020. MIRIS: Fast Object Track Queries in Video. In SIGMOD. 1907--1921.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Leveraging Video Situation Monitoring in Assisted Living Environment;Proceedings of the 17th International Conference on PErvasive Technologies Related to Assistive Environments;2024-06-26

2. V2V: Efficiently Synthesizing Video Results for Video Queries;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. Agile Modeling: From Concept to Classifier in Minutes;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

4. EQUI-VOCAL Demonstration: Synthesizing Video Queries from User Interactions;Proceedings of the VLDB Endowment;2023-08

5. EQUI-VOCAL: Synthesizing Queries for Compositional Video Events from Limited User Interactions;Proceedings of the VLDB Endowment;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3