Hardware acceleration of compression and encryption in SAP HANA

Author:

Chiosa Monica1,Maschi Fabio1,Müller Ingo1,Alonso Gustavo1,May Norman2

Affiliation:

1. ETH Zurich

2. SAP SE

Abstract

With the advent of cloud computing, where computational resources are expensive and data movement needs to be secured and minimized, database management systems need to reconsider their architecture to accommodate such requirements. In this paper, we present our analysis, design and evaluation of an FPGA-based hardware accelerator for offloading compression and encryption for SAP HANA, SAP's Software-as-a-Service (SaaS) in-memory database. Firstly, we identify expensive data-transformation operations in the I/O path. Then we present the design details of a system consisting of compression followed by different types of encryption to accommodate different security levels, and identify which combinations maximize performance. We also analyze the performance benefits of offloading decryption to the FPGA followed by decompression on the CPU. The experimental evaluation using SAP HANA traces shows that analytical engines can benefit from FPGA hardware offloading. The results identify a number of important trade-offs (e.g., the system can accommodate low-latency secured transactions to high-performance use cases or offer lower storage cost by also compressing payloads for less critical use cases), and provide valuable information to researchers and practitioners exploring the nascent space of hardware accelerators for database engines.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CXL and the Return of Scale-Up Database Engines;Proceedings of the VLDB Endowment;2024-06

2. HA-CSD: Host and SSD Coordinated Compression for Capacity and Performance;2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS);2024-05-27

3. Data Flow Architectures for Data Processing on Modern Hardware;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

4. BeeZip: Towards An Organized and Scalable Architecture for Data Compression;Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3;2024-04-27

5. Data Motion Acceleration: Chaining Cross-Domain Multi Accelerators;2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2024-03-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3