Google's Deep Web crawl

Author:

Madhavan Jayant1,Ko David1,Kot Łucja2,Ganapathy Vignesh1,Rasmussen Alex3,Halevy Alon1

Affiliation:

1. Google Inc.

2. Cornell University

3. University of California, San Diego

Abstract

The Deep Web, i.e., content hidden behind HTML forms, has long been acknowledged as a significant gap in search engine coverage. Since it represents a large portion of the structured data on the Web, accessing Deep-Web content has been a long-standing challenge for the database community. This paper describes a system for surfacing Deep-Web content, i.e., pre-computing submissions for each HTML form and adding the resulting HTML pages into a search engine index. The results of our surfacing have been incorporated into the Google search engine and today drive more than a thousand queries per second to Deep-Web content. Surfacing the Deep Web poses several challenges. First, our goal is to index the content behind many millions of HTML forms that span many languages and hundreds of domains. This necessitates an approach that is completely automatic, highly scalable, and very efficient. Second, a large number of forms have text inputs and require valid inputs values to be submitted. We present an algorithm for selecting input values for text search inputs that accept keywords and an algorithm for identifying inputs which accept only values of a specific type. Third, HTML forms often have more than one input and hence a naive strategy of enumerating the entire Cartesian product of all possible inputs can result in a very large number of URLs being generated. We present an algorithm that efficiently navigates the search space of possible input combinations to identify only those that generate URLs suitable for inclusion into our web search index. We present an extensive experimental evaluation validating the effectiveness of our algorithms.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data distribution tailoring revisited: cost-efficient integration of representative data;The VLDB Journal;2024-04-12

2. FLASH;Robotic Process Automation;2023-08-25

3. Synthesis of multilevel knowledge graphs: Methods and technologies for dynamic networks;Engineering Applications of Artificial Intelligence;2023-08

4. Effective Entity Augmentation by Querying External Data Sources;Proceedings of the VLDB Endowment;2023-07

5. The Deep Web;Understanding Search Engines;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3