Effective Entity Augmentation by Querying External Data Sources

Author:

Buss Christopher1,Mousavi Jasmin1,Tokarev Mikhail1,Termehchy Arash1,Maier David2,Lee Stefan1

Affiliation:

1. Oregon State University

2. Portland State University

Abstract

Users often want to augment and enrich entities in their datasets with relevant information from external data sources. As many external sources are accessible only via keyword-search interfaces, a user usually has to manually formulate a keyword query that extract relevant information for each entity. This approach is challenging as many data sources contain numerous tuples, only a small fraction of which may contain entity-relevant information. Furthermore, different datasets may represent the same information in distinct forms and under different terms (e.g., different data source may use different names to refer to the same person). In such cases, it is difficult to formulate a query that precisely retrieves information relevant to an entity. Current methods for information enrichment mainly rely on lengthy and resource-intensive manual effort to formulate queries to discover relevant information. However, in increasingly many settings, it is important for users to get initial answers quickly and without substantial investment in resources (such as human attention). We propose a progressive approach to discovering entity-relevant information from external sources with minimal expert intervention. It leverages end users' feedback to progressively learn how to retrieve information relevant to each entity in a dataset from external data sources. Our empirical evaluation shows that our approach learns accurate strategies to deliver relevant information quickly.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference51 articles.

1. Characterizing reference locality in the WWW

2. Drug repositioning: identifying and developing new uses for existing drugs

3. SIAM journal on computing 32, 1;Auer Peter,2002

4. DrugCentral 2023 extends human clinical data and integrates veterinary drugs

5. Iz Beltagy , Matthew E. Peters , and Arman Cohan . 2020 . Longformer: The Long-Document Transformer. arXiv:2004.05150 (2020). Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer: The Long-Document Transformer. arXiv:2004.05150 (2020).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Falcon: Fair Active Learning Using Multi-Armed Bandits;Proceedings of the VLDB Endowment;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3