Estimating Single-Node PageRank in Õ (min{ d t , √ m }) Time

Author:

Wang Hanzhi1,Wei Zhewei1

Affiliation:

1. Renmin University of China, Beijing, China

Abstract

PageRank is a famous measure of graph centrality that has numerous applications in practice. The problem of computing a single node's PageRank has been the subject of extensive research over a decade. However, existing methods still incur large time complexities despite years of efforts. Even on undirected graphs where several valuable properties held by PageRank scores, the problem of locally approximating the PageRank score of a target node remains a challenging task. Two commonly adopted techniques, Monte-Carlo based random walks and backward push, both cost O ( n ) time in the worst-case scenario, which hinders existing methods from achieving a sublinear time complexity like O (√ m ) on an undirected graph with n nodes and m edges. In this paper, we focus on the problem of single-node PageRank computation on undirected graphs. We propose a novel algorithm, SetPush , for estimating single-node PageRank specifically on undirected graphs. With non-trival analysis, we prove that our SetPush achieves the Õ (min { d t , √ m ]}) time complexity for estimating the target node t 's PageRank with constant relative error and constant failure probability on undirected graphs. We conduct comprehensive experiments to demonstrate the effectiveness of SetPush.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference41 articles.

1. [n.d.]. http://arxiv.org/abs/2307.13162. [n.d.]. http://arxiv.org/abs/2307.13162.

2. Local Computation of PageRank Contributions

3. Reid Andersen , Fan R. K. Chung , and Kevin J . Lang . 2006 . Local Graph Partitioning using PageRank Vectors. In FOCS. 475--486. Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. 2006. Local Graph Partitioning using PageRank Vectors. In FOCS. 475--486.

4. Monte Carlo Methods in PageRank Computation: When One Iteration is Sufficient

5. Bahman Bahmani , Abdur Chowdhury , and Ashish Goel . 2010. Fast incremental and personalized pagerank. arXiv preprint arXiv:1006.2880 ( 2010 ). Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. 2010. Fast incremental and personalized pagerank. arXiv preprint arXiv:1006.2880 (2010).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3