Federated Calibration and Evaluation of Binary Classifiers

Author:

Cormode Graham1,Markov Igor L.1

Affiliation:

1. Meta

Abstract

We address two major obstacles to practical deployment of AI-based models on distributed private data. Whether a model was trained by a federation of cooperating clients or trained centrally, (1) the output scores must be calibrated, and (2) performance metrics must be evaluated --- all without assembling labels in one place. In particular, we show how to perform calibration and compute the standard metrics of precision, recall, accuracy and ROC-AUC in the federated setting under three privacy models ( i ) secure aggregation, ( ii ) distributed differential privacy, ( iii ) local differential privacy. Our theorems and experiments clarify tradeoffs between privacy, accuracy, and data efficiency. They also help decide if a given application has sufficient data to support federated calibration and evaluation.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3