Answering range queries under local differential privacy

Author:

Cormode Graham1,Kulkarni Tejas1,Srivastava Divesh2

Affiliation:

1. University Of Warwick

2. AT&T Labs-Research

Abstract

Counting the fraction of a population having an input within a specified interval i.e. a range query, is a fundamental data analysis primitive. Range queries can also be used to compute other core statistics such as quantiles, and to build prediction models. However, frequently the data is subject to privacy concerns when it is drawn from individuals, and relates for example to their financial, health, religious or political status. In this paper, we introduce and analyze methods to support range queries under the local variant of differential privacy [23], an emerging standard for privacy-preserving data analysis. The local model requires that each user releases a noisy view of her private data under a privacy guarantee. While many works address the problem of range queries in the trusted aggregator setting, this problem has not been addressed specifically under untrusted aggregation (local DP) model even though many primitives have been developed recently for estimating a discrete distribution. We describe and analyze two classes of approaches for range queries, based on hierarchical histograms and the Haar wavelet transform. We show that both have strong theoretical accuracy guarantees on variance. In practice, both methods are fast and require minimal computation and communication resources. Our experiments show that the wavelet approach is most accurate in high privacy settings, while the hierarchical approach dominates for weaker privacy requirements.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PriPL-Tree: Accurate Range Query for Arbitrary Distribution under Local Differential Privacy;Proceedings of the VLDB Endowment;2024-07

2. Edgelet computing: enabling privacy-preserving decentralized data processing at the network edge;Personal and Ubiquitous Computing;2024-06-14

3. An Efficient Heap Tree-Based Range Query Scheme Under Local Differential Privacy;IEEE Internet of Things Journal;2024-06-01

4. Optimal Locally Private Data Stream Analytics;IEEE INFOCOM 2024 - IEEE Conference on Computer Communications;2024-05-20

5. Answering Spatial Density Queries Under Local Differential Privacy;IEEE Internet of Things Journal;2024-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3