Adaptive and big data scale parallel execution in oracle

Author:

Bellamkonda Srikanth1,Li Hua-Gang1,Jagtap Unmesh1,Zhu Yali1,Liang Vince1,Cruanes Thierry1

Affiliation:

1. Oracle USA, Redwood Shores, CA

Abstract

This paper showcases some of the newly introduced parallel execution methods in Oracle RDBMS. These methods provide highly scalable and adaptive evaluation for the most commonly used SQL operations - joins, group-by, rollup/cube, grouping sets, and window functions. The novelty of these techniques is their use of multi-stage parallelization models, accommodation of optimizer mistakes, and the runtime parallelization and data distribution decisions. These parallel plans adapt based on the statistics gathered on the real data at query execution time. We realized enormous performance gains from these adaptive parallelization techniques. The paper also discusses our approach to parallelize queries with operations that are inherently serial. We believe all these techniques will make their way into big data analytics and other massively parallel database systems.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning-based Property Estimation with Polynomials;Proceedings of the ACM on Management of Data;2024-05-29

2. Identifying the Root Causes of DBMS Suboptimality;ACM Transactions on Database Systems;2024-02-28

3. RelJoin: Relative-cost-based selection of distributed join methods for query plan optimization;Information Sciences;2024-02

4. A new window Clause for SQL++;The VLDB Journal;2023-12-19

5. Krypton: Real-Time Serving and Analytical SQL Engine at ByteDance;Proceedings of the VLDB Endowment;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3