Krypton: Real-Time Serving and Analytical SQL Engine at ByteDance

Author:

Chen Jianjun1,Shi Rui1,Chen Heng1,Zhang Li1,Li Ruidong1,Ding Wei1,Fan Liya1,Wang Hao1,Xiong Mu1,Chen Yuxiang1,Dong Benchao1,Guo Kuankuan1,Lin Yuanjin1,Liu Xiao1,Shi Haiyang1,Wang Peipei1,Wang Zikang1,Yang Yemeng1,Zhao Junda1,Zhou Dongyan1,Zuo Zhikai1,Liang Yuming1

Affiliation:

1. ByteDance US Infrastructure System Lab, ByteDance, Inc

Abstract

In recent years, at ByteDance, we have started seeing more and more business scenarios that require performing real-time data serving besides complex Ad Hoc analysis over large amounts of freshly imported data. The serving workload requires performing complex queries over massive newly added data items with minimal delay. These systems are often used in mission-critical scenarios, whereas traditional OLAP systems cannot handle such use cases. To work around the problem, ByteDance products often have to use multiple systems together in production, forcing the same data to be ETLed into multiple systems, causing data consistency problems, wasting resources, and increasing learning and maintenance costs. To solve the above problem, we built a single Hybrid Serving and Analytical Processing (HSAP) system to handle both workload types. HSAP is still in its early stage, and very few systems are yet on the market. This paper demonstrates how to build Krypton, a competitive cloud-native HSAP system that provides both excellent elasticity and query performance by utilizing many previously known query processing techniques, a hierarchical cache with persistent memory, and a native columnar storage format. Krypton can support high data freshness, high data ingestion rates, and strong data consistency. We also discuss lessons and best practices we learned in developing and operating Krypton in production.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3