Affiliation:
1. ByteDance US Infrastructure System Lab, ByteDance, Inc
Abstract
In recent years, at ByteDance, we have started seeing more and more business scenarios that require performing real-time data serving besides complex Ad Hoc analysis over large amounts of freshly imported data. The serving workload requires performing complex queries over massive newly added data items with minimal delay. These systems are often used in mission-critical scenarios, whereas traditional OLAP systems cannot handle such use cases. To work around the problem, ByteDance products often have to use multiple systems together in production, forcing the same data to be ETLed into multiple systems, causing data consistency problems, wasting resources, and increasing learning and maintenance costs.
To solve the above problem, we built a single Hybrid Serving and Analytical Processing (HSAP) system to handle both workload types. HSAP is still in its early stage, and very few systems are yet on the market. This paper demonstrates how to build Krypton, a competitive cloud-native HSAP system that provides both excellent elasticity and query performance by utilizing many previously known query processing techniques, a hierarchical cache with persistent memory, and a native columnar storage format. Krypton can support high data freshness, high data ingestion rates, and strong data consistency. We also discuss lessons and best practices we learned in developing and operating Krypton in production.
Publisher
Association for Computing Machinery (ACM)
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development