Massively parallel sort-merge joins in main memory multi-core database systems

Author:

Albutiu Martina-Cezara1,Kemper Alfons1,Neumann Thomas1

Affiliation:

1. Technische Universität München, Garching, Germany

Abstract

Two emerging hardware trends will dominate the database system technology in the near future: increasing main memory capacities of several TB per server and massively parallel multi-core processing. Many algorithmic and control techniques in current database technology were devised for disk-based systems where I/O dominated the performance. In this work we take a new look at the well-known sort-merge join which, so far, has not been in the focus of research in scalable massively parallel multi-core data processing as it was deemed inferior to hash joins. We devise a suite of new massively parallel sort-merge (MPSM) join algorithms that are based on partial partition-based sorting. Contrary to classical sort-merge joins, our MPSM algorithms do not rely on a hard to parallelize final merge step to create one complete sort order. Rather they work on the independently created runs in parallel. This way our MPSM algorithms are NUMA-affine as all the sorting is carried out on local memory partitions. An extensive experimental evaluation on a modern 32-core machine with one TB of main memory proves the competitive performance of MPSM on large main memory databases with billions of objects. It scales (almost) linearly in the number of employed cores and clearly outperforms competing hash join proposals -- in particular it outperforms the "cutting-edge" Vectorwise parallel query engine by a factor of four.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 125 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LakeHarbor: Making Structures First-Class Citizens in Data Lakes;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

2. RelJoin: Relative-cost-based selection of distributed join methods for query plan optimization;Information Sciences;2024-02

3. NOCAP: Near-Optimal Correlation-Aware Partitioning Joins;Proceedings of the ACM on Management of Data;2023-12-08

4. Krypton: Real-Time Serving and Analytical SQL Engine at ByteDance;Proceedings of the VLDB Endowment;2023-08

5. Design and Analysis of a Processing-in-DIMM Join Algorithm: A Case Study with UPMEM DIMMs;Proceedings of the ACM on Management of Data;2023-06-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3