DoveDB: A Declarative and Low-Latency Video Database

Author:

Xiao Ziyang1,Zhang Dongxiang1,Li Zepeng1,Wu Sai1,Tan Kian-Lee2,Chen Gang1

Affiliation:

1. Zhejiang University, China

2. National University of Singapore

Abstract

Concerning the usability and efficiency to manage video data generated from large-scale cameras, we demonstrate DoveDB, a declarative and low-latency video database. We devise a more comprehensive video query language called VMQL to improve the expressiveness of previous SQL-like languages, which are augmented with functionalities for model-oriented management and deployment. We also propose a light-weight ingestion scheme to extract tracklets of all the moving objects and build semantic indexes to facilitate efficient query processing. For user interaction, we construct a simulation environment with 120 cameras deployed in a road network and demonstrate three interesting scenarios. Using VMQL, users are allowed to 1) train a visual model using SQL-like statement and deploy it on dozens of target cameras simultaneously for online inference; 2) submit multi-object tracking (MOT) requests on target cameras, store the ingested results and build semantic indexes; and 3) issue an aggregation or top- k query on the ingested cameras and obtain the response within milliseconds. A preliminary video introduction of DoveDB is available at https://www.youtube.com/watch?v=N139dEyvAJk

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference8 articles.

1. Michael R. Anderson , Michael J. Cafarella , Germán Ros , and Thomas F . Wenisch . 2019 . Physical Representation-Based Predicate Optimization for a Visual Analytics Database. In ICDE. IEEE , 1466--1477. Michael R. Anderson, Michael J. Cafarella, Germán Ros, and Thomas F. Wenisch. 2019. Physical Representation-Based Predicate Optimization for a Visual Analytics Database. In ICDE. IEEE, 1466--1477.

2. MIRIS: Fast Object Track Queries in Video

3. Favyen Bastani and Sam Madden . 2022 . OTIF: Efficient Tracker Pre-processing over Large Video Datasets. SIGMOD (2022). Favyen Bastani and Sam Madden. 2022. OTIF: Efficient Tracker Pre-processing over Large Video Datasets. SIGMOD (2022).

4. Vaas

5. Daren Chao Nick Koudas and Ioannis Xarchakos. 2020. SVQ++: Querying for Object Interactions in Video Streams. In SIGMOD. ACM 2769--2772. Daren Chao Nick Koudas and Ioannis Xarchakos. 2020. SVQ++: Querying for Object Interactions in Video Streams. In SIGMOD. ACM 2769--2772.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predictive and Near-Optimal Sampling for View Materialization in Video Databases;Proceedings of the ACM on Management of Data;2024-03-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3