Predictive and Near-Optimal Sampling for View Materialization in Video Databases

Author:

Xu Yanchao1ORCID,Zhang Dongxiang1ORCID,Zhang Shuhao2ORCID,Wu Sai1ORCID,Feng Zexu1ORCID,Chen Gang1ORCID

Affiliation:

1. Zhejiang University, Hangzhou, China

2. Nanyang Technological University, Singapore, Singapore

Abstract

Scalable video query optimization has re-emerged as an attractive research topic in recent years. The OTIF system, a video database with cutting-edge efficiency, has introduced a new paradigm of utilizing view materialization to facilitate online query processing. Specifically, it stores the results of multi-object tracking queries to answer common video queries with sub-second latency. However, the cost associated with view materialization in OTIF is prohibitively high for supporting large-scale video streams. In this paper, we study efficient MOT-based view materialization in video databases. We first conduct a theoretical analysis and establish two types of optimality measures that serve as lower bounds for video frame sampling. In order to minimize the number of processed video frames, we propose a novel predictive sampling framework, namely LEAP, exhibits near-optimal sampling performance. Its efficacy relies on a data-driven motion manager that enables accurate trajectory prediction, a compact object detection model via knowledge distillation, and a robust cross-frame associator to connect moving objects in two frames with a large time gap. Extensive experiments are conducted in 7 real datasets, with 7 baselines and a comprehensive query set, including selection, aggregation and top-k queries. The results show that with comparable query accuracy to OTIF, our LEAP can reduce the number of processed video frames by up to 9× and achieve 5× speedup in query processing time. Moreover, LEAP demonstrates impressive throughput when handling large-scale video streams, as it leverages a single NVIDIA RTX 3090ti GPU to support real-time MOT-based view materialization from 160 video streams simultaneously.

Funder

National Key Research and Development Project of China

Key Research Program of Zhejiang Province

CCF-Huawei Populus Grove Fund

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3