Table union search on open data

Author:

Nargesian Fatemeh1,Zhu Erkang1,Pu Ken Q.2,Miller Renée J.1

Affiliation:

1. University of Toronto

2. UOIT

Abstract

We define the table union search problem and present a probabilistic solution for finding tables that are unionable with a query table within massive repositories. Two tables are unionable if they share attributes from the same domain. Our solution formalizes three statistical models that describe how unionable attributes are generated from set domains, semantic domains with values from an ontology, and natural language domains. We propose a data-driven approach that automatically determines the best model to use for each pair of attributes. Through a distribution-aware algorithm, we are able to find the optimal number of attributes in two tables that can be unioned. To evaluate accuracy, we created and open-sourced a benchmark of Open Data tables. We show that our table union search outperforms in speed and accuracy existing algorithms for finding related tables and scales to provide efficient search over Open Data repositories containing more than one million attributes.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 123 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pb-Hash: Partitioned b-bit Hashing;Proceedings of the 2024 ACM SIGIR International Conference on Theory of Information Retrieval;2024-08-02

2. A Large Scale Test Corpus for Semantic Table Search;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

3. A multi-start simulated annealing strategy for Data Lake Organization Problem;Applied Soft Computing;2024-07

4. Enriching Relations with Additional Attributes for ER;Proceedings of the VLDB Endowment;2024-07

5. Causal Dataset Discovery with Large Language Models;Proceedings of the 2024 Workshop on Human-In-the-Loop Data Analytics;2024-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3