Enriching Relations with Additional Attributes for ER

Author:

Yan Mengyi1,Fan Wenfei2,Wang Yaoshu3,Xie Min3

Affiliation:

1. Beihang University, China

2. Shenzhen Institute of Computing Sciences, China and University of Edinburgh, United Kingdom and Beihang University, China

3. Shenzhen Institute of Computing Sciences, China

Abstract

This paper studies a new problem of relation enrichment. Given a relation D of schema R and a knowledge graph G with overlapping information, it is to identify a small number of relevant features from G , and extend schema R with the additional attributes, to maximally improve the accuracy of resolving entities represented by the tuples of D. We formulate the enrichment problem and show its intractability. Nonetheless, we propose a method to extract features from G that are diverse from the existing attributes of R , minimize null values, and moreover, reduce false positives and false negatives of entity resolution (ER) models. The method links tuples and vertices that refer to the same entity, learns a robust policy to extract attributes via reinforcement learning, and jointly trains the policy and ER models. Moreover, we develop algorithms for (incrementally) enriching D. Using real-life data, we experimentally verify that relation enrichment improves the accuracy of ER above 15.4% (percentage points) by adding 5 attributes, up to 33%.

Publisher

Association for Computing Machinery (ACM)

Reference139 articles.

1. 2017. Identity fraud's impact on the insurance sector. https://legal.thomsonreuters.com/en/insights/articles/identity-frauds-impact-on-the-insurance-sector.

2. 2019. IMDB. https://www.imdb.com/interfaces/.

3. 2020. Knowledge Graphs for Financial Services. https://www2.deloitte.com/content/dam/Deloitte/nl/Documents/risk/deloitte-nl-risk-knowledge-graphs-financial-services.pdf.

4. 2022. DBpedia. http://wiki.dbpedia.org.

5. 2022. Fraud detection using knowledge graph: How to detect and visualize fraudulent activities. https://www.nebula-graph.io/posts/fraud-detection-using-knowledge-and-graph-database.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3