Abstract
When numerical and machine learning (ML) computations are expressed relationally, classical query execution strategies (hash-based joins and aggregations) can do a poor job distributing the computation. In this paper, we propose a two-phase execution strategy for numerical computations that are expressed relationally, as aggregated join trees (that is, expressed as a series of relational joins followed by an aggregation). In a pilot run, lineage information is collected; this lineage is used to optimally plan the computation at the level of individual records. Then, the computation is actually executed. We show experimentally that a relational system making use of this two-phase strategy can be an excellent platform for distributed ML computations.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献