Evaluating end-to-end optimization for data analytics applications in weld

Author:

Palkar Shoumik1,Thomas James1,Narayanan Deepak1,Thaker Pratiksha1,Palamuttam Rahul1,Negi Parimajan1,Shanbhag Anil2,Schwarzkopf Malte2,Pirk Holger3,Amarasinghe Saman2,Madden Samuel2,Zaharia Matei1

Affiliation:

1. Stanford University

2. MIT CSAIL

3. Imperial College London

Abstract

Modern analytics applications use a diverse mix of libraries and functions. Unfortunately, there is no optimization across these libraries, resulting in performance penalties as high as an order of magnitude in many applications. To address this problem, we proposed Weld, a common runtime for existing data analytics libraries that performs key physical optimizations such as pipelining under existing, imperative library APIs. In this work, we further develop the Weld vision by designing an automatic adaptive optimizer for Weld applications, and evaluating its impact on realistic data science workloads. Our optimizer eliminates multiple forms of overhead that arise when composing imperative libraries like Pandas and NumPy, and uses lightweight measurements to make data-dependent decisions at run-time in ad-hoc workloads where no statistics are available, with sub-second overhead. We also evaluate which optimizations have the largest impact in practice and whether Weld can be integrated into libraries incrementally. Our results are promising: using our optimizer, Weld accelerates data science workloads by up to 23X on one thread and 80X on eight threads, and its adaptive optimizations provide up to a 3.75X speedup over rule-based optimization. Moreover, Weld provides benefits if even just 4--5 operators in a library are ported to use it. Our results show that common runtime designs like Weld may be a viable approach to accelerate analytics.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Query Compilation Without Regrets;Proceedings of the ACM on Management of Data;2024-05-29

2. QFusor: A UDF Optimizer Plugin for SQL Databases;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. Sharing Queries with Nonequivalent User-defined Aggregate Functions;ACM Transactions on Database Systems;2024-04-10

4. BladeDISC: Optimizing Dynamic Shape Machine Learning Workloads via Compiler Approach;Proceedings of the ACM on Management of Data;2023-11-13

5. Efficient Execution of User-Defined Functions in SQL Queries;Proceedings of the VLDB Endowment;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3