Efficient Execution of User-Defined Functions in SQL Queries

Author:

Foufoulas Yannis1,Simitsis Alkis2

Affiliation:

1. University of Athens, Athena R.C., Athens, Greece

2. Athena Research Center, Athens, Greece

Abstract

User-defined functions (UDFs) have been widely used to overcome the expressivity limitations of SQL and complement its declarative nature with functional capabilities. UDFs are particularly useful in today's applications that involve complex data analytics and machine learning algorithms and logic. However, UDFs pose significant performance challenges in query processing and optimization, largely due to the mismatch of the UDF execution and SQL processing environments. In this tutorial, we present state-of-the-art methods and systems towards efficient execution of UDFs in SQL queries. We focus on low-level techniques for physical optimization and compilation of UDF queries, describe and compare the core, recent approaches in the area, discuss their advantages and limitations, identify critical gaps in theory and practice, and propose promising future research directions.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference42 articles.

1. Mark Blacher Joachim Giesen Sören Laue Julien Klaus and Viktor Leis. 2022. Machine Learning Linear Algebra and More: Is SQL All You Need?. In CIDR. Mark Blacher Joachim Giesen Sören Laue Julien Klaus and Viktor Leis. 2022. Machine Learning Linear Algebra and More: Is SQL All You Need?. In CIDR.

2. Matthias Boehm , Berthold Reinwald , Dylan Hutchison , Prithviraj Sen , Alexandre V. Evfimievski , and Niketan Pansare . 2018. On Optimizing Operator Fusion Plans for Large-Scale Machine Learning in SystemML. PVLDB 11, 12 ( 2018 ). Matthias Boehm, Berthold Reinwald, Dylan Hutchison, Prithviraj Sen, Alexandre V. Evfimievski, and Niketan Pansare. 2018. On Optimizing Operator Fusion Plans for Large-Scale Machine Learning in SystemML. PVLDB 11, 12 (2018).

3. Hanfeng Chen , Joseph Vinish D'silva , Laurie J. Hendren, and Bettina Kemme. 2021 . HorsePower: Accelerating Database Queries for Advanced Data Analytics. In EDBT. 361--366. Hanfeng Chen, Joseph Vinish D'silva, Laurie J. Hendren, and Bettina Kemme. 2021. HorsePower: Accelerating Database Queries for Advanced Data Analytics. In EDBT. 361--366.

4. Alvin Cheung Armando Solar-Lezama and Samuel Madden. 2013. Optimizing database-backed applications with query synthesis. In SIGPLAN. 3--14. Alvin Cheung Armando Solar-Lezama and Samuel Madden. 2013. Optimizing database-backed applications with query synthesis. In SIGPLAN. 3--14.

5. An architecture for compiling UDF-centric workflows

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. QFusor: A UDF Optimizer Plugin for SQL Databases;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

2. HYPPO: Using Equivalences to Optimize Pipelines in Exploratory Machine Learning;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. Upscaling Messaging and Stateful Computation;Companion of the 15th ACM/SPEC International Conference on Performance Engineering;2024-05-07

4. Sharing Queries with Nonequivalent User-defined Aggregate Functions;ACM Transactions on Database Systems;2024-04-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3