Towards a learning optimizer for shared clouds

Author:

Wu Chenggang1,Jindal Alekh2,Amizadeh Saeed2,Patel Hiren2,Le Wangchao2,Qiao Shi2,Rao Sriram3

Affiliation:

1. University of California, Berkeley

2. Microsoft

3. Facebook

Abstract

Query optimizers are notorious for inaccurate cost estimates, leading to poor performance. The root of the problem lies in inaccurate cardinality estimates, i.e., the size of intermediate (and final) results in a query plan. These estimates also determine the resources consumed in modern shared cloud infrastructures. In this paper, we present C ARD L EARNER , a machine learning based approach to learn cardinality models from previous job executions and use them to predict the cardinalities in future jobs. The key intuition in our approach is that shared cloud workloads are often recurring and overlapping in nature, and so we could learn cardinality models for overlapping subgraph templates. We discuss various learning approaches and show how learning a large number of smaller models results in high accuracy and explainability. We further present an exploration technique to avoid learning bias by considering alternate join orders and learning cardinality models over them. We describe the feedback loop to apply the learned models back to future job executions. Finally, we show a detailed evaluation of our models (up to 5 orders of magnitude less error), query plans (60% applicability), performance (up to 100% faster, 3x fewer resources), and exploration (optimal in few 10s of executions).

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automating localized learning for cardinality estimation based on XGBoost;Knowledge and Information Systems;2024-06-01

2. Differential Optimization Testing of Gremlin-Based Graph Database Systems;2024 IEEE Conference on Software Testing, Verification and Validation (ICST);2024-05-27

3. Towards Exploratory Query Optimization for Template-Based SQL Workloads;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

4. PACE: Poisoning Attacks on Learned Cardinality Estimation;Proceedings of the ACM on Management of Data;2024-03-12

5. ALECE: An Attention-based Learned Cardinality Estimator for SPJ Queries on Dynamic Workloads;Proceedings of the VLDB Endowment;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3