ALECE: An Attention-based Learned Cardinality Estimator for SPJ Queries on Dynamic Workloads

Author:

Li Pengfei1,Wei Wenqing1,Zhu Rong1,Ding Bolin1,Zhou Jingren1,Lu Hua2

Affiliation:

1. Alibaba Group, China

2. Roskilde University, Denmark

Abstract

For efficient query processing, DBMS query optimizers have for decades relied on delicate cardinality estimation methods. In this work, we propose an Attention-based LEarned Cardinality Estimator ( ALECE for short) for SPJ queries. The core idea is to discover the implicit relationships between queries and underlying dynamic data using attention mechanisms in ALECE's two modules that are built on top of carefully designed featurizations for data and queries. In particular, from all attributes in the database, the data-encoder module obtains organic and learnable aggregations which implicitly represent correlations among the attributes, whereas the query-analyzer module builds a bridge between the query featurizations and the data aggregations to predict the query's cardinality. We experimentally evaluate ALECE on multiple dynamic workloads. The results show that ALECE enables PostgreSQL's optimizer to achieve nearly optimal performance, clearly outperforming its built-in cardinality estimator and other alternatives.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference67 articles.

1. https://github.com/pfl-cs/ALECE. https://github.com/pfl-cs/ALECE.

2. https://relational.fit.cvut.cz/dataset/Stats. https://relational.fit.cvut.cz/dataset/Stats.

3. http://homepages.cwi.nl/~boncz/job/imdb.tgz. http://homepages.cwi.nl/~boncz/job/imdb.tgz.

4. https://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp. https://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp.

5. Lei Jimmy Ba , Jamie Ryan Kiros, and Geoffrey E. Hinton . 2016 . Layer Normalization . arXiv preprint abs/1607.06450 (2016). http://arxiv.org/abs/1607.06450 Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer Normalization. arXiv preprint abs/1607.06450 (2016). http://arxiv.org/abs/1607.06450

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learned Query Optimizer: What is New and What is Next;Companion of the 2024 International Conference on Management of Data;2024-06-09

2. Learning-based Property Estimation with Polynomials;Proceedings of the ACM on Management of Data;2024-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3