Samza

Author:

Noghabi Shadi A.1,Paramasivam Kartik2,Pan Yi2,Ramesh Navina2,Bringhurst Jon2,Gupta Indranil1,Campbell Roy H.1

Affiliation:

1. University of Illinois at Urbana-Champaign

2. LinkedIn Corp

Abstract

Distributed stream processing systems need to support stateful processing, recover quickly from failures to resume such processing, and reprocess an entire data stream quickly. We present Apache Samza, a distributed system for stateful and fault-tolerant stream processing. Samza utilizes a partitioned local state along with a low-overhead background changelog mechanism, allowing it to scale to massive state sizes (hundreds of TB) per application. Recovery from failures is sped up by re-scheduling based on Host Affinity. In addition to processing infinite streams of events, Samza supports processing a finite dataset as a stream, from either a streaming source (e.g., Kafka), a database snapshot (e.g., Databus), or a file system (e.g. HDFS), without having to change the application code (unlike the popular Lambda-based architectures which necessitate maintenance of separate code bases for batch and stream path processing). Samza is currently in use at LinkedIn by hundreds of production applications with more than 10, 000 containers. Samza is an open-source Apache project adopted by many top-tier companies (e.g., LinkedIn, Uber, Netflix, TripAdvisor, etc.). Our experiments show that Samza: a) handles state efficiently, improving latency and throughput by more than 100X compared to using a remote storage; b) provides recovery time independent of state size; c) scales performance linearly with number of containers; and d) supports reprocessing of the data stream quickly and with minimal interference on real-time traffic.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 195 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. μWheel: Aggregate Management for Streams and Queries;Proceedings of the 18th ACM International Conference on Distributed and Event-based Systems;2024-06-24

2. Stream Types;Proceedings of the ACM on Programming Languages;2024-06-20

3. From Batch to Stream: Automatic Generation of Online Algorithms;Proceedings of the ACM on Programming Languages;2024-06-20

4. Fault Tolerance Placement in the Internet of Things;Proceedings of the ACM on Management of Data;2024-05-29

5. Emma: Elastic Multi-Resource Management for Realtime Stream Processing;IEEE INFOCOM 2024 - IEEE Conference on Computer Communications;2024-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3