An evaluation of distributed concurrency control

Author:

Harding Rachael1,Van Aken Dana2,Pavlo Andrew2,Stonebraker Michael1

Affiliation:

1. MIT CSAIL

2. Carnegie Mellon University

Abstract

Increasing transaction volumes have led to a resurgence of interest in distributed transaction processing. In particular, partitioning data across several servers can improve throughput by allowing servers to process transactions in parallel. But executing transactions across servers limits the scalability and performance of these systems. In this paper, we quantify the effects of distribution on concurrency control protocols in a distributed environment. We evaluate six classic and modern protocols in an in-memory distributed database evaluation framework called Deneva, providing an apples-to-apples comparison between each. Our results expose severe limitations of distributed transaction processing engines. Moreover, in our analysis, we identify several protocol-specific scalability bottlenecks. We conclude that to achieve truly scalable operation, distributed concurrency control solutions must seek a tighter coupling with either novel network hardware (in the local area) or applications (via data modeling and semantically-aware execution), or both.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dodo: A scalable optimistic deterministic concurrency control protocol;Future Generation Computer Systems;2024-10

2. Lauca: A Workload Duplicator for Benchmarking Transactional Database Performance;IEEE Transactions on Knowledge and Data Engineering;2024-07

3. Optimizing Aria Concurrency Control Protocol with Early Dependency Resolution;2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW);2024-05-27

4. FC: Adaptive Atomic Commit via Failure Detection;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

5. Lion: Minimizing Distributed Transactions Through Adaptive Replica Provision;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3