High performance transactions via early write visibility

Author:

Faleiro Jose M.1,Abadi Daniel J.1,Hellerstein Joseph M.2

Affiliation:

1. Yale University

2. UC Berkeley

Abstract

In order to guarantee recoverable transaction execution, database systems permit a transaction's writes to be observable only at the end of its execution. As a consequence, there is generally a delay between the time a transaction performs a write and the time later transactions are permitted to read it. This delayed write visibility can significantly impact the performance of serializable database systems by reducing concurrency among conflicting transactions. This paper makes the observation that delayed write visibility stems from the fact that database systems can arbitrarily abort transactions at any point during their execution. Accordingly, we make the case for database systems which only abort transactions under a restricted set of conditions, thereby enabling a new recoverability mechanism, early write visibility , which safely makes transactions' writes visible prior to the end of their execution. We design a new serializable concurrency control protocol, piece-wise visibility (PWV), with the explicit goal of enabling early write visibility. We evaluate PWV against state-of-the-art serializable protocols and a highly optimized implementation of read committed, and find that PWV can outperform serializable protocols by an order of magnitude and read committed by 3X on high contention workloads.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dodo: A scalable optimistic deterministic concurrency control protocol;Future Generation Computer Systems;2024-10

2. Enabling High-Performance EOV Blockchains via Transaction Ordering Exploration;2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS);2024-07-23

3. Towards Optimal Transaction Scheduling;Proceedings of the VLDB Endowment;2024-07

4. Fast Commitment for Geo-Distributed Transactions via Decentralized Co-Coordinators;Proceedings of the VLDB Endowment;2024-06

5. Spectrum: Speedy and Strictly-Deterministic Smart Contract Transactions for Blockchain Ledgers;Proceedings of the VLDB Endowment;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3