Efficient and effective data imputation with influence functions

Author:

Miao Xiaoye1,Wu Yangyang1,Chen Lu2,Gao Yunjun1,Wang Jun2,Yin Jianwei1

Affiliation:

1. Zhejiang University, Hangzhou, China

2. The Hong Kong University of Science and Technology, Hong Kong, China

Abstract

Data imputation has been extensively explored to solve the missing data problem. The dramatically rising volume of missing data makes the training of imputation models computationally infeasible in real-life scenarios. In this paper, we propose an efficient and effective data imputation system with influence functions , named EDIT, which quickly trains a parametric imputation model with representative samples under imputation accuracy guarantees. EDIT mainly consists of two modules, i.e., an imputation influence evaluation (IIE) module and a representative sample selection (RSS) module. IIE leverages the influence functions to estimate the effect of (in)complete samples on the prediction result of parametric imputation models. RSS builds a minimum set of the high-effect samples to satisfy a user-specified imputation accuracy. Moreover, we introduce a weighted loss function that drives the parametric imputation model to pay more attention on the high-effect samples. Extensive experiments upon ten state-of-the-art imputation methods demonstrate that, EDIT adopts only about 5% samples to speed up the model training by 4x in average with more than 11% accuracy gain.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference48 articles.

1. An introduction to kernel and nearest -neighbor non-parametric regression;Altman Naomi S;The American Statistician,1992

2. Discovery of genuine functional dependencies from relational data with missing values

3. DataWig: Missing value imputation for tables;Biessmann Felix;Journal of Machine Learning Research,2019

4. Muzellec Boris Josse Julie Boyer Claire and Cuturi Marco. 2020. Missing data imputation using optimal transport. In ICML. 1--18. Muzellec Boris Josse Julie Boyer Claire and Cuturi Marco. 2020. Missing data imputation using optimal transport. In ICML. 1--18.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Natural generative noise diffusion model imputation;Knowledge-Based Systems;2024-10

2. IterClean: An Iterative Data Cleaning Framework with Large Language Models;ACM Turing Award Celebration Conference 2024;2024-07-05

3. Automatic Data Repair: Are We Ready to Deploy?;Proceedings of the VLDB Endowment;2024-06

4. Missing Data Imputation with Uncertainty-Driven Network;Proceedings of the ACM on Management of Data;2024-05-29

5. Differentiable and Scalable Generative Adversarial Models for Data Imputation (Extended Abstract);2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3