Discovery of genuine functional dependencies from relational data with missing values

Author:

Berti-Équille Laure1,Harmouch Hazar2,Naumann Felix2,Novelli Noël1,Thirumuruganathan Saravanan3

Affiliation:

1. Aix-Marseille Univ., Marseille, France

2. University of Potsdam, Germany

3. HBKU, Doha, Qatar

Abstract

Functional dependencies (FDs) play an important role in maintaining data quality. They can be used to enforce data consistency and to guide repairs over a database. In this work, we investigate the problem of missing values and its impact on FD discovery. When using existing FD discovery algorithms, some genuine FDs could not be detected precisely due to missing values or some non-genuine FDs can be discovered even though they are caused by missing values with a certain NULL semantics. We define a notion of genuineness and propose algorithms to compute the genuineness score of a discovered FD. This can be used to identify the genuine FDs among the set of all valid dependencies that hold on the data. We evaluate the quality of our method over various real-world and semi-synthetic datasets with extensive experiments. The results show that our method performs well for relatively large FD sets and is able to accurately capture genuine FDs.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Natural generative noise diffusion model imputation;Knowledge-Based Systems;2024-10

2. Measuring Approximate Functional Dependencies: A Comparative Study;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. A Multi-grained Cascade Structure for Online Sparse Streaming Feature Selection;2024 7th International Symposium on Autonomous Systems (ISAS);2024-05-07

4. In-Database Data Imputation;Proceedings of the ACM on Management of Data;2024-03-12

5. Mixed Covers of Keys and Functional Dependencies for Maintaining the Integrity of Data under Updates;Proceedings of the VLDB Endowment;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3