Theoretically and practically efficient parallel nucleus decomposition

Author:

Shi Jessica1,Dhulipala Laxman1,Shun Julian1

Affiliation:

1. MIT CSAIL

Abstract

This paper studies the nucleus decomposition problem, which has been shown to be useful in finding dense substructures in graphs. We present a novel parallel algorithm that is efficient both in theory and in practice. Our algorithm achieves a work complexity matching the best sequential algorithm while also having low depth (parallel running time), which significantly improves upon the only existing parallel nucleus decomposition algorithm (Sariyüce et al. , PVLDB 2018). The key to the theoretical efficiency of our algorithm is a new lemma that bounds the amount of work done when peeling cliques from the graph, combined with the use of a theoretically-efficient parallel algorithms for clique listing and bucketing. We introduce several new practical optimizations, including a new multi-level hash table structure to store information on cliques space-efficiently and a technique for traversing this structure cache-efficiently. On a 30-core machine with two-way hyper-threading on real-world graphs, we achieve up to a 55x speedup over the state-of-the-art parallel nucleus decomposition algorithm by Sariyüce et al. , and up to a 40x self-relative parallel speedup. We are able to efficiently compute larger nucleus decompositions than prior work on several million-scale graphs for the first time.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Algorithms for Density Decomposition on Large Static and Dynamic Graphs;Proceedings of the VLDB Endowment;2024-07

2. Efficient Parallel D-Core Decomposition at Scale;Proceedings of the VLDB Endowment;2024-06

3. Teaching Parallel Algorithms Using the Binary-Forking Model;2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW);2024-05-27

4. Theoretically and Practically Efficient Parallel Nucleus Decomposition (Abstract);Proceedings of the 2023 ACM Workshop on Highlights of Parallel Computing;2023-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3