Dense subgraph maintenance under streaming edge weight updates for real-time story identification

Author:

Angel Albert1,Sarkas Nikos1,Koudas Nick1,Srivastava Divesh2

Affiliation:

1. University of Toronto

2. AT&T Labs-Research

Abstract

Recent years have witnessed an unprecedented proliferation of social media. People around the globe author, every day, millions of blog posts, micro-blog posts, social network status updates, etc. This rich stream of information can be used to identify, on an ongoing basis, emerging stories, and events that capture popular attention. Stories can be identified via groups of tightly-coupled real-world entities, namely the people, locations, products, etc., that are involved in the story. The sheer scale, and rapid evolution of the data involved necessitate highly efficient techniques for identifying important stories at every point of time. The main challenge in real-time story identification is the maintenance of dense subgraphs (corresponding to groups of tightly-coupled entities) under streaming edge weight updates (resulting from a stream of user-generated content). This is the first work to study the efficient maintenance of dense subgraphs under such streaming edge weight updates. For a wide range of definitions of density, we derive theoretical results regarding the magnitude of change that a single edge weight update can cause. Based on these, we propose a novel algorithm, DynDens, which outperforms adaptations of existing techniques to this setting, and yields meaningful results. Our approach is validated by a thorough experimental evaluation on large-scale real and synthetic datasets.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum-Inspired Classical Algorithm for Graph Problems by Gaussian Boson Sampling;PRX Quantum;2024-05-23

2. A Survey on the Densest Subgraph Problem and its Variants;ACM Computing Surveys;2024-04-30

3. Public Safety Event Detection Based on Reinforcement Federated Client Selection;2024 IEEE International Conference on Big Data and Smart Computing (BigComp);2024-02-18

4. Finding Subgraphs with Maximum Total Density and Limited Overlap in Weighted Hypergraphs;ACM Transactions on Knowledge Discovery from Data;2024-02-12

5. Social Event Detection with Reinforced Deep Heterogeneous Graph Attention Network;2023 IEEE International Conference on Big Data (BigData);2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3