SAFE

Author:

Chan Tsz Nam1,Ip Pak Lon2,U Leong Hou2,Choi Byron1,Xu Jianliang1

Affiliation:

1. Hong Kong Baptist University

2. University of Macau

Abstract

Kernel density visualization (KDV) has been the de facto method in many spatial analysis tasks, including ecological modeling, crime hotspot detection, traffic accident hotspot detection, and disease outbreak detection. In these tasks, domain experts usually generate multiple KDVs with different bandwidth values. However, generating a single KDV, let alone multiple KDVs, is time-consuming. In this paper, we develop a share-and-aggregate framework, namely SAFE, to reduce the time complexity of generating multiple KDVs given a set of bandwidth values. On the other hand, domain experts can specify bandwidth values on the fly. To tackle this issue, we further extend SAFE and develop the exact method SAFE all and the 2-approximation method SAFE exp which reduce the time complexity under this setting. Experimental results on four large-scale datasets (up to 4.33M data points) show that these three methods achieve at least one-order-of-magnitude speedup for generating multiple KDVs in most of the cases without degrading the visualization quality.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference74 articles.

1. [n. d.]. ArcGIS. http://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/how-kernel-density-works.htm (last accessed: 1st May 2021). [n. d.]. ArcGIS. http://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/how-kernel-density-works.htm (last accessed: 1 st May 2021).

2. [n. d.]. Atlanta Police Department Open Data. http://opendata.atlantapd.org/(last accessed: 1st May 2021). [n. d.]. Atlanta Police Department Open Data. http://opendata.atlantapd.org/(last accessed: 1 st May 2021).

3. [n. d.]. Chicago Data Portal. https://data.cityofchicago.org/Environment-Sustainable-Development/CDPH-Environmental-Inspections/i9rk-duva (last accessed: 1st May 2021 ). [n. d.]. Chicago Data Portal. https://data.cityofchicago.org/Environment-Sustainable-Development/CDPH-Environmental-Inspections/i9rk-duva (last accessed: 1st May 2021).

4. [n. d.]. IKCEST: Disaster Risk Reduction. http://drr.ikcest.org/knowledge_service/ncp.html (last accessed: 1st May 2021). [n. d.]. IKCEST: Disaster Risk Reduction. http://drr.ikcest.org/knowledge_service/ncp.html (last accessed: 1 st May 2021).

5. [n. d.]. NYC Open Data. https://data.cityofnewyork.us/Public-Safety/Motor-Vehicle-Collisions-Crashes/h9gi-nx95 (last accessed: 1st May 2021 ). [n. d.]. NYC Open Data. https://data.cityofnewyork.us/Public-Safety/Motor-Vehicle-Collisions-Crashes/h9gi-nx95 (last accessed: 1st May 2021).

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LION: Fast and High-Resolution Network Kernel Density Visualization;Proceedings of the VLDB Endowment;2024-02

2. Rlibkdv: A Versatile Kernel Density Visualization Library for Geospatial Analytics (Heatmap);CRAN: Contributed Packages;2023-08-28

3. Kernel Density Visualization for Big Geospatial Data: Algorithms and Applications;2023 24th IEEE International Conference on Mobile Data Management (MDM);2023-07

4. Large-scale Geospatial Analytics: Problems, Challenges, and Opportunities;Companion of the 2023 International Conference on Management of Data;2023-06-04

5. LIBKDV;Proceedings of the VLDB Endowment;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3