LION: Fast and High-Resolution Network Kernel Density Visualization

Author:

Chan Tsz Nam1,Zang Rui2,Zhu Bojian2,U Leong Hou3,Wu Dingming1,Xu Jianliang2

Affiliation:

1. Shenzhen University

2. Hong Kong Baptist University

3. University of Macau

Abstract

Network Kernel Density Visualization (NKDV) has often been used in a wide range of applications, e.g., criminology, transportation science, and urban planning. However, NKDV is computationally expensive, which cannot be scalable to large-scale datasets and high resolution sizes. Although a recent work, called aggregate distance augmentation (ADA), has been developed for improving the efficiency to generate NKDV, this method is still slow and does not take the resolution size into account for optimizing the efficiency. In this paper, we develop a new solution, called LION, which can reduce the worst-case time complexity for generating high-resolution NKDV, without increasing the space complexity. Experiment results on four large-scale location datasets verify that LION can achieve 2.86x to 35.36x speedup compared with the state-of-the-art ADA method.

Publisher

Association for Computing Machinery (ACM)

Reference84 articles.

1. 2024. ArcGIS. https://www.arcgis.com/index.html.

2. 2024. Chicago Data Portal. https://data.cityofchicago.org/Transportation/Traffic-Crashes-Crashes/85ca-t3if.

3. 2024. City of Detroit Open Data Portal. https://data.detroitmi.gov/datasets/detroitmi::911-calls-for-service/about.

4. 2024. Gainesville's Open Data Portal. https://data.cityofgainesville.org/Public-Safety/Crime-Responses/gvua-xt9q/data.

5. 2024. Road Safety Data. https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3