On the embeddability of random walk distances

Author:

Zhao Xiaohan1,Chang Adelbert1,Sarma Atish Das2,Zheng Haitao1,Zhao Ben Y.1

Affiliation:

1. Department of Computer Science, U. C. Santa Barbara

2. eBay Inc.

Abstract

Analysis of large graphs is critical to the ongoing growth of search engines and social networks. One class of queries centers around node affinity, often quantified by random-walk distances between node pairs, including hitting time, commute time, and personalized PageRank (PPR). Despite the potential of these "metrics," they are rarely, if ever, used in practice, largely due to extremely high computational costs. In this paper, we investigate methods to scalably and efficiently compute random-walk distances, by "embedding" graphs and distances into points and distances in geometric coordinate spaces. We show that while existing graph coordinate systems (GCS) can accurately estimate shortest path distances, they produce significant errors when embedding random-walk distances. Based on our observations, we propose a new graph embedding system that explicitly accounts for per-node graph properties that affect random walk. Extensive experiments on a range of graphs show that our new approach can accurately estimate both symmetric and asymmetric random-walk distances. Once a graph is embedded, our system can answer queries between any two nodes in 8 microseconds, orders of magnitude faster than existing methods. Finally, we show that our system produces estimates that can replace ground truth in applications with minimal impact on application output.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Algorithms for Personalized PageRank Computation: A Survey;IEEE Transactions on Knowledge and Data Engineering;2024-09

2. Efficient Approximation of Kemeny's Constant for Large Graphs;Proceedings of the ACM on Management of Data;2024-05-29

3. Resistance Eccentricity in Graphs: Distribution, Computation and Optimization;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

4. Efficient Estimation of Pairwise Effective Resistance;Proceedings of the ACM on Management of Data;2023-05-26

5. DTI-HETA: prediction of drug–target interactions based on GCN and GAT on heterogeneous graph;Briefings in Bioinformatics;2022-04-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3