DTI-HETA: prediction of drug–target interactions based on GCN and GAT on heterogeneous graph

Author:

Shao Kanghao1,Zhang Yunhao1,Wen Yuqi2,Zhang Zhongnan1ORCID,He Song2ORCID,Bo Xiaochen2

Affiliation:

1. Xiamen University, Xiamen, China

2. Beijing Institute of Radiation Medicine, Beijing, China

Abstract

Abstract Drug–target interaction (DTI) prediction plays an important role in drug repositioning, drug discovery and drug design. However, due to the large size of the chemical and genomic spaces and the complex interactions between drugs and targets, experimental identification of DTIs is costly and time-consuming. In recent years, the emerging graph neural network (GNN) has been applied to DTI prediction because DTIs can be represented effectively using graphs. However, some of these methods are only based on homogeneous graphs, and some consist of two decoupled steps that cannot be trained jointly. To further explore GNN-based DTI prediction by integrating heterogeneous graph information, this study regards DTI prediction as a link prediction problem and proposes an end-to-end model based on HETerogeneous graph with Attention mechanism (DTI-HETA). In this model, a heterogeneous graph is first constructed based on the drug–drug and target–target similarity matrices and the DTI matrix. Then, the graph convolutional neural network is utilized to obtain the embedded representation of the drugs and targets. To highlight the contribution of different neighborhood nodes to the central node in aggregating the graph convolution information, a graph attention mechanism is introduced into the node embedding process. Afterward, an inner product decoder is applied to predict DTIs. To evaluate the performance of DTI-HETA, experiments are conducted on two datasets. The experimental results show that our model is superior to the state-of-the-art methods. Also, the identification of novel DTIs indicates that DTI-HETA can serve as a powerful tool for integrating heterogeneous graph information to predict DTIs.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3