Single machine graph analytics on massive datasets using Intel optane DC persistent memory

Author:

Gill Gurbinder1,Dathathri Roshan1,Hoang Loc1,Peri Ramesh2,Pingali Keshav1

Affiliation:

1. University of Texas at Austin

2. Intel Corporation

Abstract

Intel Optane DC Persistent Memory (Optane PMM) is a new kind of byte-addressable memory with higher density and lower cost than DRAM. This enables the design of affordable systems that support up to 6TB of randomly accessible memory. In this paper, we present key runtime and algorithmic principles to consider when performing graph analytics on extreme-scale graphs on Optane PMM and highlight principles that can apply to graph analytics on all large-memory platforms. To demonstrate the importance of these principles, we evaluate four existing shared-memory graph frameworks and one out-of-core graph framework on large real-world graphs using a machine with 6TB of Optane PMM. Our results show that frameworks using the runtime and algorithmic principles advocated in this paper (i) perform significantly better than the others and (ii) are competitive with graph analytics frameworks running on production clusters.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DGAP: Efficient Dynamic Graph Analysis on Persistent Memory;Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis;2023-11-11

2. Persistent Memory Research in the Post-Optane Era;Proceedings of the 1st Workshop on Disruptive Memory Systems;2023-10-23

3. Rethinking Design Paradigm of Graph Processing System with a CXL-like Memory Semantic Fabric;2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid);2023-05

4. MiniGraph: Querying Big Graphs with a Single Machine;Proceedings of the VLDB Endowment;2023-05

5. Power-aware Computing with Optane Persistent Memory Modules;2023 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW);2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3