MiniGraph: Querying Big Graphs with a Single Machine

Author:

Zhu Xiaoke1,Liu Yang1,Liu Shuhao2,Fan Wenfei3

Affiliation:

1. Beihang University, China and Shenzhen Institute of Computing Sciences, China

2. Shenzhen Institute of Computing Sciences, China

3. Shenzhen Institute of Computing Sciences, China and University of Edinburgh, United Kingdom and Beihang University, China

Abstract

This paper presents MiniGraph, an out-of-core system for querying big graphs with a single machine. As opposed to previous single-machine graph systems, MiniGraph proposes a pipelined architecture to overlap I/O and CPU operations, and improves multi-core parallelism. It also introduces a hybrid model to support both vertex-centric and graph-centric parallel computations, to simplify parallel graph programming, speed up beyond-neighborhood computations, and parallelize computations within each subgraph. The model induces a two-level parallel execution model to explore both inter-subgraph and intra-subgraph parallelism. Moreover, MiniGraph develops new optimization techniques under its architecture. Using real-life graphs of different types, we show that MiniGraph is up to 76.1x faster than prior out-of-core systems, and performs better than some multi-machine systems that use up to 12 machines.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference61 articles.

1. 2020. GraphScope. Retrieved May 1 2023 from https://graphscope.io 2020. GraphScope. Retrieved May 1 2023 from https://graphscope.io

2. 2022. Apache Spark Partition Strategy. Retrieved May 1, 2023 from https://spark.apache.org/docs/1.4.0/api/java/org/apache/spark/graphx/PartitionStrategy.RandomVertexCut$.html 2022. Apache Spark Partition Strategy. Retrieved May 1, 2023 from https://spark.apache.org/docs/1.4.0/api/java/org/apache/spark/graphx/PartitionStrategy.RandomVertexCut$.html

3. 2022. Friendster dataset. Retrieved May 1, 2023 from https://snap.stanford.edu/data/com-Friendster.html 2022. Friendster dataset. Retrieved May 1, 2023 from https://snap.stanford.edu/data/com-Friendster.html

4. 2023. Full version. Retrieved May 1, 2023 from https://shuhaoliu.github.io/assets/papers/minigraph-full.pdf 2023. Full version. Retrieved May 1, 2023 from https://shuhaoliu.github.io/assets/papers/minigraph-full.pdf

5. 2023. Graph500 specifications. Retrieved May 1, 2023 from https://graph500.org 2023. Graph500 specifications. Retrieved May 1, 2023 from https://graph500.org

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3