Incrementalization of graph partitioning algorithms

Author:

Fan Wenfei1,Liu Muyang2,Tian Chao3,Xu Ruiqi2,Zhou Jingren3

Affiliation:

1. University of Edinburgh and SICS, Shenzhen University and BDBC, Beihang University

2. University of Edinburgh

3. Alibaba Group

Abstract

This paper studies incremental graph partitioning. Given a (vertex-cut or edge-cut) partition C(G) of a graph G and updates ΔG to G, it is to compute changes ΔO to C(G), yielding a partition of the updated graph such that (a) the new partition is load-balanced, (b) its cut size is minimum, and (c) the changes ΔO are also minimum. We show that this tri-criteria optimization problem is NP-complete, even when ΔG has a constant size. Worse yet, it is unbounded, i.e., there exists no algorithm that computes such ΔO with a cost that is determined only by the changes ΔG and ΔO. We approach this by proposing to incrementalize widely-used graph partitioners A into heuristically-bounded incremental algorithms A Δ . Given graph G, updates ΔG to G and a partition A(G) of G by A, AΔ computes changes ΔO to A(G) such that (1) applying ΔO to A(G) produces a new partition of the updated graph although it may not be exactly the one derived by A, (2) it retains the same bounds on balance and cut sizes as A, and (3) ΔO is decided by ΔG alone. We show that we can deduce A Δ from both vertex-cut and edge-cut partitioners A, retaining their bounds. Using real-life and synthetic data, we verify the efficiency and partition quality of our incremental partitioners.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An efficient SSSP algorithm on time-evolving graphs with prediction of computation results;Journal of Parallel and Distributed Computing;2024-04

2. Labeled graph partitioning scheme for distributed edge caching;Future Generation Computer Systems;2024-04

3. Non-Intrusive Balance Tomography Using Reinforcement Learning in the Lightning Network;ACM Transactions on Privacy and Security;2023-12-29

4. Development of Multi-level Substructure Analysis and Solution Framework Based on SiPESC.FEM;Computational and Experimental Simulations in Engineering;2023-12-01

5. RAGraph: A Region-Aware Framework for Geo-Distributed Graph Processing;Proceedings of the VLDB Endowment;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3