An end-to-end learning-based cost estimator

Author:

Sun Ji1,Li Guoliang1

Affiliation:

1. Tsinghua University

Abstract

Cost and cardinality estimation is vital to query optimizer, which can guide the query plan selection. However traditional empirical cost and cardinality estimation techniques cannot provide high-quality estimation, because they may not effectively capture the correlation between multiple tables. Recently the database community shows that the learning-based cardinality estimation is better than the empirical methods. However, existing learning-based methods have several limitations. Firstly, they focus on estimating the cardinality, but cannot estimate the cost. Secondly, they are either too heavy or hard to represent complicated structures, e.g., complex predicates. To address these challenges, we propose an effective end-to-end learning-based cost estimation framework based on a tree-structured model, which can estimate both cost and cardinality simultaneously. We propose effective feature extraction and encoding techniques, which consider both queries and physical operations in feature extraction. We embed these features into our tree-structured model. We propose an effective method to encode string values, which can improve the generalization ability for predicate matching. As it is prohibitively expensive to enumerate all string values, we design a patten-based method, which selects patterns to cover string values and utilizes the patterns to embed string values. We conducted experiments on real-world datasets and experimental results showed that our method outperformed baselines.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3