REX

Author:

Mihaylov Svilen R.1,Ives Zachary G.1,Guha Sudipto1

Affiliation:

1. University of Pennsylvania, Philadelphia, PA

Abstract

In today's Web and social network environments, query workloads include ad hoc and OLAP queries, as well as iterative algorithms that analyze data relationships (e.g., link analysis, clustering, learning). Modern DBMSs support ad hoc and OLAP queries, but most are not robust enough to scale to large clusters. Conversely, "cloud" platforms like MapReduce execute chains of batch tasks across clusters in a fault tolerant way, but have too much overhead to support ad hoc queries. Moreover, both classes of platform incur significant overhead in executing iterative data analysis algorithms. Most such iterative algorithms repeatedly refine portions of their answers, until some convergence criterion is reached. However, general cloud platforms typically must reprocess all data in each step. DBMSs that support recursive SQL are more efficient in that they propagate only the changes in each step --- but they still accumulate each iteration's state, even if it is no longer useful. User-defined functions are also typically harder to write for DBMSs than for cloud platforms. We seek to unify the strengths of both styles of platforms, with a focus on supporting iterative computations in which changes , in the form of deltas , are propagated from iteration to iteration, and state is efficiently updated in an extensible way. We present a programming model oriented around deltas, describe how we execute and optimize such programs in our REX runtime system, and validate that our platform also handles failures gracefully. We experimentally validate our techniques, and show speedups over the competing methods ranging from 2.5 to nearly 100 times.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3