Formal semantics and high performance in declarative machine learning using Datalog

Author:

Wang Jin,Wu Jiacheng,Li Mingda,Gu Jiaqi,Das Ariyam,Zaniolo Carlo

Abstract

AbstractWith an escalating arms race to adopt machine learning (ML) in diverse application domains, there is an urgent need to support declarative machine learning over distributed data platforms. Toward this goal, a new framework is needed where users can specify ML tasks in a manner where programming is decoupled from the underlying algorithmic and system concerns. In this paper, we argue that declarative abstractions based on Datalog are natural fits for machine learning and propose a purely declarative ML framework with a Datalog query interface. We show that using aggregates in recursive Datalog programs entails a concise expression of ML applications, while providing a strictly declarative formal semantics. This is achieved by introducing simple conditions under which the semantics of recursive programs is guaranteed to be equivalent to that of aggregate-stratified ones. We further provide specialized compilation and planning techniques for semi-naive fixpoint computation in the presence of aggregates and optimization strategies that are effective on diverse recursive programs and distributed data platforms. To test and demonstrate these research advances, we have developed a powerful and user-friendly system on top of Apache Spark. Extensive evaluations on large-scale datasets illustrate that this approach will achieve promising performance gains while improving both programming flexibility and ease of development and deployment for ML applications.

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Communication-Avoiding Recursive Aggregation;2023 IEEE International Conference on Cluster Computing (CLUSTER);2023-10-31

2. Provenance-based Explanations for Machine Learning (ML) Models;2023 IEEE 39th International Conference on Data Engineering Workshops (ICDEW);2023-04

3. Provenance-based Explanations for Machine Learning (ML) Models;I C DATA ENGIN WORKS;2023

4. Demonstration of LogicLib: An Expressive Multi-Language Interface over Scalable Datalog System;Proceedings of the 31st ACM International Conference on Information & Knowledge Management;2022-10-17

5. Optimizing Parallel Recursive Datalog Evaluation on Multicore Machines;Proceedings of the 2022 International Conference on Management of Data;2022-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3