The Vadalog system

Author:

Bellomarini Luigi1,Sallinger Emanuel2,Gottlob Georg3

Affiliation:

1. University of Oxford and Banca d'Italia and Università Roma Tre

2. University of Oxford

3. University of Oxford and TU Wien

Abstract

Over the past years, there has been a resurgence of Datalog-based systems in the database community as well as in industry. In this context, it has been recognized that to handle the complex knowledge-based scenarios encountered today, such as reasoning over large knowledge graphs, Datalog has to be extended with features such as existential quantification. Yet, Datalog-based reasoning in the presence of existential quantification is in general undecidable. Many efforts have been made to define decidable fragments. Warded Datalog+/- is a very promising one, as it captures PTIME complexity while allowing ontological reasoning. Yet so far, no implementation of Warded Datalog+/- was available. In this paper we present the Vadalog system, a Datalog-based system for performing complex logic reasoning tasks, such as those required in advanced knowledge graphs. The Vadalog system is Oxford's contribution to the VADA research programme, a joint effort of the universities of Oxford, Manchester and Edinburgh and around 20 industrial partners. As the main contribution of this paper, we illustrate the first implementation of Warded Datalog+/-, a high-performance Datalog+/- system utilizing an aggressive termination control strategy. We also provide a comprehensive experimental evaluation.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ontology-Mediated Query Answering Using Graph Patterns with Conditions;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

2. Parallel Collaborative Reasoning Approaches Based on DatalogMTL in IoT Scenarios;2024 27th International Conference on Computer Supported Cooperative Work in Design (CSCWD);2024-05-08

3. Nemo: First Glimpse of a New Rule Engine;Electronic Proceedings in Theoretical Computer Science;2023-09-12

4. SparqLog: A System for Efficient Evaluation of SPARQL 1.1 Queries via Datalog;Proceedings of the VLDB Endowment;2023-09

5. Knowledge Graphs Querying;ACM SIGMOD Record;2023-08-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3