A data-based approach to social influence maximization

Author:

Goyal Amit1,Bonchi Francesco2,Lakshmanan Laks V. S.1

Affiliation:

1. University of British Columbia, Vancouver, BC, Canada

2. Yahoo! Research, Barcelona, Spain

Abstract

Influence maximization is the problem of finding a set of users in a social network, such that by targeting this set, one maximizes the expected spread of influence in the network. Most of the literature on this topic has focused exclusively on the social graph, overlooking historical data, i.e., traces of past action propagations. In this paper, we study influence maximization from a novel data-based perspective. In particular, we introduce a new model, which we call credit distribution , that directly leverages available propagation traces to learn how influence flows in the network and uses this to estimate expected influence spread. Our approach also learns the different levels of influence-ability of users, and it is time-aware in the sense that it takes the temporal nature of influence into account. We show that influence maximization under the credit distribution model is NP -hard and that the function that defines expected spread under our model is submodular. Based on these, we develop an approximation algorithm for solving the influence maximization problem that at once enjoys high accuracy compared to the standard approach, while being several orders of magnitude faster and more scalable.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 290 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence Maximization via Graph Neural Bandits;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. A Benchmark Study of Deep-RL Methods for Maximum Coverage Problems over Graphs;Proceedings of the VLDB Endowment;2024-07

3. Discovering Personalized Characteristic Communities in Attributed Graphs;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

4. Adaptive Content-Aware Influence Maximization via Online Learning to Rank;ACM Transactions on Knowledge Discovery from Data;2024-04-12

5. Multi-Item Continuous Influence Maximization;2023 IEEE International Conference on Big Data (BigData);2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3