Adaptive Content-Aware Influence Maximization via Online Learning to Rank

Author:

Theocharidis Konstantinos1ORCID,Karras Panagiotis2ORCID,Terrovitis Manolis3ORCID,Skiadopoulos Spiros4ORCID,Lauw Hady W.1ORCID

Affiliation:

1. Singapore Management University, Singapore, Singapore

2. Aarhus University, Aarhus, Denmark

3. Athena Research Center, Athens, Greece

4. University of the Peloponnese, Tripoli, Greece

Abstract

How can we adapt the composition of a post over a series of rounds to make it more appealing in a social network? Techniques that progressively learn how to make a fixed post more influential over rounds have been studied in the context of the Influence Maximization (IM) problem, which seeks a set of seed users that maximize a post’s influence. However, there is no work on progressively learning how a post’s features affect its influence. In this article, we propose and study the problem of Adaptive Content-Aware Influence Maximization (ACAIM), which calls to find k features to form a post in each round so as to maximize the cumulative influence of those posts over all rounds. We solve ACAIM by applying, for the first time, an Online Learning to Rank (OLR) framework for IM purposes. We introduce the CATRID propagation model , which expresses how posts disseminate in a social network using click probabilities and post visibility criteria and develop a simulator that runs CATRID via a training-testing scheme based on real posts of the VK social network, so as to realistically represent the learning environment. We deploy three learners that solve ACAIM in an online (real-time) manner. We experimentally prove the practical suitability of our solutions via exhaustive experiments on multiple brands (operating as different case studies ) and several VK datasets; the best learner is evaluated on 45 separate case studies yielding convincing results.

Funder

National Research Foundation, Singapore

AI Singapore Programme

Independent Research Fund Denmark

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3