An LSM-based tuple compaction framework for Apache AsterixDB

Author:

Alkowaileet Wail Y.1,Alsubaiee Sattam2,Carey Michael J.1

Affiliation:

1. University of California

2. King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia

Abstract

Document database systems store self-describing semi-structured records, such as JSON, "as-is" without requiring the users to pre-define a schema. This provides users with the flexibility to change the structure of incoming records without worrying about taking the system offline or hindering the performance of currently running queries. However, the flexibility of such systems does not free. The large amount of redundancy in the records can introduce an unnecessary storage overhead and impact query performance. Our focus in this paper is to address the storage overhead issue by introducing a tuple compactor framework that infers and extracts the schema from self-describing semi-structured records during the data ingestion. As many prominent document stores, such as MongoDB and Couchbase, adopt Log Structured Merge (LSM) trees in their storage engines, our framework exploits LSM lifecycle events to piggyback the schema inference and extraction operations. We have implemented and empirically evaluated our approach to measure its impact on storage, data ingestion, and query performance in the context of Apache AsterixDB.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Benchmarking Learned and LSM Indexes for Data Sortedness;Proceedings of the Tenth International Workshop on Testing Database Systems;2024-06-09

2. Towards flexibility and robustness of LSM trees;The VLDB Journal;2024-01-11

3. Real-Time LSM-Trees for HTAP Workloads;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04

4. Dissecting, Designing, and Optimizing LSM-based Data Stores;Proceedings of the 2022 International Conference on Management of Data;2022-06-10

5. Columnar formats for schemaless LSM-based document stores;Proceedings of the VLDB Endowment;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3