Towards flexibility and robustness of LSM trees

Author:

Huynh AndyORCID,Chaudhari Harshal A.ORCID,Terzi EvimariaORCID,Athanassoulis ManosORCID

Abstract

AbstractLog-structured merge trees (LSM trees) are increasingly used as part of the storage engine behind several data systems, and are frequently deployed in the cloud. As the number of applications relying on LSM-based storage backends increases, the problem of performance tuning of LSM trees receives increasing attention. We consider both nominal tunings—where workload and execution environment are accurately known a priori—and robust tunings—which consider uncertainty in the workload knowledge. This type of workload uncertainty is common in modern applications, notably in shared infrastructure environments like the public cloud. To address this problem, we introduce Endure, a new paradigm for tuning LSM trees in the presence of workload uncertainty. Specifically, we focus on the impact of the choice of compaction policy, size ratio, and memory allocation on the overall performance. Endure considers a robust formulation of the throughput maximization problem and recommends a tuning that offers near-optimal throughput when the executed workload is not the same, instead in a neighborhood of the expected workload. Additionally, we explore the robustness of flexible LSM designs by proposing a new unified design called K-LSM that encompasses existing designs. We deploy our robust tuning system, Endure, on a state-of-the-art key-value store, RocksDB, and demonstrate throughput improvements of up to 5$$\times $$ × in the presence of uncertainty. Our results indicate that the tunings obtained by Endure are more robust than tunings obtained under our expanded LSM design space. This indicates that robustness may not be inherent to a design, instead, it is an outcome of a tuning process that explicitly accounts for uncertainty.

Funder

IBM

National Science Foundation

RedHat Incubation Award

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3