FireLedger

Author:

Buchnik Yehonatan1,Friedman Roy1

Affiliation:

1. CS Technion

Abstract

Blockchains are distributed secure ledgers to which transactions are issued continuously and each block of transactions is tightly coupled to its predecessors. Permissioned blockchains place special emphasis on transactions throughput. In this paper we present FireLedger, which leverages the iterative nature of blockchains in order to improve their throughput in optimistic execution scenarios. FireLedger trades latency for throughput in the sense that in FireLedger the last f + 1 blocks of each node's blockchain are considered tentative, i.e., they may be rescinded in case one of the last f + 1 blocks proposers was Byzantine. Yet, when optimistic assumptions are met, a new block is decided in each communication step, which consists of a proposer that sends only its proposal and all other participants are sending a single bit each. In our performance study FireLedger obtained 20% -- 600% better throughput than state of the art protocols like HotStuff and BFT-SMaRt, depending on the configuration.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Distributed Transaction Processing in Untrusted Environments;Companion of the 2024 International Conference on Management of Data;2024-06-09

2. Spectrum: Speedy and Strictly-Deterministic Smart Contract Transactions for Blockchain Ledgers;Proceedings of the VLDB Endowment;2024-06

3. Prevalidated Block for Improving Block Propagation in Blockchain;2023 4th International Conference on Data Analytics for Business and Industry (ICDABI);2023-10-25

4. When Private Blockchain Meets Deterministic Database;Proceedings of the ACM on Management of Data;2023-05-26

5. Scaling Blockchain Consensus via a Robust Shared Mempool;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3