An algebraic approach for data-centric scientific workflows

Author:

Ogasawara Eduardo1,Dias Jonas2,de Oliveira Daniel2,Porto Fábio3,Valduriez Patrick4,Mattoso Marta2

Affiliation:

1. COPPE/UFRJ, Rio de Janeiro, Brazil and CEFET/RJ, Rio de Janeiro, Brazil

2. COPPE/UFRJ, Rio de Janeiro, Brazil

3. LNCC Petrópolis, Brazil

4. INRIA & LIRMM, Montpellier, France

Abstract

Scientific workflows have emerged as a basic abstraction for structuring and executing scientific experiments in computational environments. In many situations, these workflows are computationally and data intensive, thus requiring execution in large-scale parallel computers. However, parallelization of scientific workflows remains low-level, ad-hoc and labor-intensive, which makes it hard to exploit optimization opportunities. To address this problem, we propose an algebraic approach (inspired by relational algebra) and a parallel execution model that enable automatic optimization of scientific workflows. We conducted a thorough validation of our approach using both a real oil exploitation application and synthetic data scenarios. The experiments were run in Chiron, a data-centric scientific workflow engine implemented to support our algebraic approach. Our experiments demonstrate performance improvements of up to 226% compared to an ad-hoc workflow implementation.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GraspCC-LB: Dimensionamento de Recursos para Execução de Workflows em Ambientes de Computação de Alto Desempenho;Anais do XXIV Simpósio em Sistemas Computacionais de Alto Desempenho (SSCAD 2023);2023-10-17

2. Challenges of Provenance in Scientific Workflow Management Systems;2022 IEEE/ACM Workshop on Workflows in Support of Large-Scale Science (WORKS);2022-11

3. Computational resource and cost prediction service for scientific workflows in federated clouds;Future Generation Computer Systems;2021-12

4. Provenance-and machine learning-based recommendation of parameter values in scientific workflows;PeerJ Computer Science;2021-07-05

5. Executing cyclic scientific workflows in the cloud;Journal of Cloud Computing;2021-04-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3