Affiliation:
1. Zhejiang University, Hangzhou, China and Singapore Management University, Singapore
2. Zhejiang University, Hangzhou, China
3. Singapore Management University, Singapore
4. Aalborg University, Denmark
Abstract
The general notion of a metric space encompasses a diverse range of data types and accompanying similarity measures. Hence, metric search plays an important role in a wide range of settings, including multimedia retrieval, data mining, and data integration. With the aim of accelerating metric search, a collection of pivot-based indexing techniques for metric data has been proposed, which reduces the number of potentially expensive similarity comparisons by exploiting the triangle inequality for pruning and validation. However, no comprehensive empirical study of those techniques exists. Existing studies each offers only a narrower coverage, and they use different pivot selection strategies that affect performance substantially and thus render cross-study comparisons difficult or impossible. We offer a survey of existing pivot-based indexing techniques, and report a comprehensive empirical comparison of their construction costs, update efficiency, storage sizes, and similarity search performance. As part of the study, we provide modifications for two existing indexing techniques to make them more competitive. The findings and insights obtained from the study reveal different strengths and weaknesses of different indexing techniques, and offer guidance on selecting an appropriate indexing technique for a given setting.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献