Pivot-based metric indexing

Author:

Chen Lu1,Gao Yunjun2,Zheng Baihua3,Jensen Christian S.4,Yang Hanyu2,Yang Keyu2

Affiliation:

1. Zhejiang University, Hangzhou, China and Singapore Management University, Singapore

2. Zhejiang University, Hangzhou, China

3. Singapore Management University, Singapore

4. Aalborg University, Denmark

Abstract

The general notion of a metric space encompasses a diverse range of data types and accompanying similarity measures. Hence, metric search plays an important role in a wide range of settings, including multimedia retrieval, data mining, and data integration. With the aim of accelerating metric search, a collection of pivot-based indexing techniques for metric data has been proposed, which reduces the number of potentially expensive similarity comparisons by exploiting the triangle inequality for pruning and validation. However, no comprehensive empirical study of those techniques exists. Existing studies each offers only a narrower coverage, and they use different pivot selection strategies that affect performance substantially and thus render cross-study comparisons difficult or impossible. We offer a survey of existing pivot-based indexing techniques, and report a comprehensive empirical comparison of their construction costs, update efficiency, storage sizes, and similarity search performance. As part of the study, we provide modifications for two existing indexing techniques to make them more competitive. The findings and insights obtained from the study reveal different strengths and weaknesses of different indexing techniques, and offer guidance on selecting an appropriate indexing technique for a given setting.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GTS: GPU-based Tree Index for Fast Similarity Search;Proceedings of the ACM on Management of Data;2024-05-29

2. FLEX: A fast and light-weight learned index for kNN search in high-dimensional space;Information Sciences;2024-05

3. An eXplainable Artificial Intelligence Methodology on Big Data Architecture;Cognitive Computation;2024-04-11

4. SCORE: Scalable Contact Tracing over Uncertain Trajectories;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

5. Adaptive Indexing in High-Dimensional Metric Spaces;Proceedings of the VLDB Endowment;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3