An eXplainable Artificial Intelligence Methodology on Big Data Architecture

Author:

La Gatta Valerio,Moscato Vincenzo,Postiglione Marco,Sperlì GiancarloORCID

Abstract

AbstractAlthough artificial intelligence has become part of everyone’s real life, a trust crisis against such systems is occurring, thus increasing the need to explain black-box predictions, especially in the military, medical, and financial domains. Modern eXplainable Artificial Intelligence (XAI) techniques focus on benchmark datasets, but the cognitive applicability of such solutions under big data settings is still unclear due to memory or computation constraints. In this paper, we extend a model-agnostic XAI methodology, named Cluster-Aided Space Transformation for Local Explanation (CASTLE), to be able to deal with high-volume datasets. CASTLE aims to explain the black-box behavior of predictive models by combining both local (i.e., based on the input sample) and global (i.e., based on the whole scope for action of the model) information. In particular, the local explanation provides a rule-based explanation for the prediction of a target instance as well as the directions to update the likelihood of the predicted class. Our extension leverages modern big data technologies (e.g., Apache Spark) to handle the high volume, variety, and velocity of huge datasets. We have evaluated the framework on five datasets, in terms of temporal efficiency, explanation quality, and model significance. Our results indicate that the proposed approach retains the high-quality explanations associated with CASTLE while efficiently handling large datasets. Importantly, it exhibits a sub-linear, rather than exponential, dependence on dataset size, making it a scalable solution for massive datasets or in any big data scenario.

Funder

Università degli Studi di Napoli Federico II

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3