Optimizing Video Queries with Declarative Clues

Author:

Chao Daren1,Chen Yueting2,Koudas Nick1,Yu Xiaohui2

Affiliation:

1. University of Toronto, Toronto, Canada

2. York University, Toronto, Canada

Abstract

Video Database Management Systems (VDBMS) leverage advancements in computer vision and deep learning for efficient video data analysis and retrieval. This paper introduces the concept of user-specified Clues, allowing users to incorporate domain-specific knowledge, referred to as Clues, into query optimization. Clues are expressed as Clue types, each associated with optimization rules, and applied to queries through Clue instances. The extensible ClueVQS system we present to incorporate these ideas, optimizes queries automatically, utilizing Clues to improve processing efficiency. We also introduce algorithms to optimize queries using Clues allowing for trade-offs between speed and query accuracy. Our proposals and system address challenges such as data-dependent Clue effectiveness, limiting search space, and accuracy-efficiency trade-offs. Detailed experimental results demonstrate query speedups of up to two orders of magnitude compared to other applicable approaches, and a reduction of the query optimizer time by up to 95% while respecting user-specified accuracy constraints, showcasing the effectiveness of the proposed framework.

Publisher

Association for Computing Machinery (ACM)

Reference51 articles.

1. Physical Representation-Based Predicate Optimization for a Visual Analytics Database

2. Egon Balas and M Guignard. 1979. Report of the Session on: Branch and Bound/Implicit Enumeration. In Annals of Discrete Mathematics. Vol. 5. Elsevier, 185--191.

3. Seiden: Revisiting Query Processing in Video Database Systems

4. MIRIS: Fast Object Track Queries in Video

5. OTIF: Efficient Tracker Pre-processing over Large Video Datasets

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Video Queries with Declarative Clues;Proceedings of the VLDB Endowment;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3